Blind normalization of speech from different channels

نویسنده

  • David N. Levin
چکیده

We show how to construct a channel-independent representation of speech that has propagated through a noisy reverberant channel. This is done by blindly rescaling the cepstral time series by a nonlinear function, with the form of this scale function being determined by previously encountered cepstra from that channel. The rescaled form of the time series is an invariant property of it in the following sense: It is unaffected if the time series is transformed by any time-independent invertible distortion. Because a linear channel with stationary noise and impulse response transforms cepstra in this way, the new technique can be used to remove the channel dependence of a cepstral time series. In experiments, the method achieved greater channel-independence than cepstral mean normalization, and it was comparable to the combination of cepstral mean normalization and spectral subtraction, despite the fact that no measurements of channel noise or reverberations were required (unlike spectral subtraction).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind normalization of speech from different channels and speakers

This paper describes representations of time-dependent signals that are invariant under any invertible time-independent transformation of the signal time series. Such a representation is created by rescaling the signal in a non-linear dynamic manner that is determined by recently encountered signal levels. This technique may make it possible to normalize signals that are related by channel-depe...

متن کامل

Blind Normalization of Speech from Differe

This paper describes representations of time-dependent signals that are invariant under any invertible time-independent transformation of the signal time series. Such a representation is created by rescaling the signal in a non-linear dynamic manner that is determined by recently encountered signal levels. This technique may make it possible to normalize signals that are related by channel-depe...

متن کامل

Speech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering

This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS ...

متن کامل

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

Robust Speech Recognition with Multi-channel Codebook Dependent Cepstral Normalization (mcdcn)

In this paper, we address the issue of speech recognition in the presence of interfering signals, in cases where the signals corrupting the speech are recorded in separate channels. We propose to combine a trivial form of filtering with MCDCN, a Multi-channel version of the Codebook Dependent Cepstral Normalization, where the cepstra of the noise are estimated from the reference signals. We rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 116 1  شماره 

صفحات  -

تاریخ انتشار 2003